АСБ «Рубикон»

Сетевой контроллер шлейфов сигнализации СКШС-01-16

Группа компаний СИГМА

Руководство по эксплуатации НЛВТ.425641.157 РЭ

Оглавление

Назначение	
Технические характеристики	6
Комплект поставки	9
Описание, индикация, монтаж, подключение	9
1 Индикация	
2 Типы безадресных ШС	
3 Примеры подключения безадресных ШС	14
Проверка работоспособности	
Техническое обслуживание	
· · · · ·	
=	
Сведение о дистрибьюторе	17
÷ •	
Редакции документа	
_	2 Типы безадресных ШС

Настоящее руководство по эксплуатации (далее РЭ) распространяется на сетевой контроллер шлейфов сигнализации СКШС-01-16 (далее СКШС).

Внимание!

- 1. Все работы, связанные с монтажом, наладкой и эксплуатацией настоящего устройства, должны осуществлять лица, имеющие допуск на обслуживание установок до 1000 В, прошедшие инструктаж по технике безопасности и изучившие настоящий документ.
- 2. При подключении извещателя к шлейфу сигнализации соблюдать полярность подключения контактов. Не допускается попадание напряжения питания постоянного (переменного) тока, превышающее значение 40 В на клеммы извещателей.
- 3. Все работы по монтажу и подключению необходимо проводить при обесточенных устройствах.

Принятые в документации сокращения:

АСБ	адресная система безопасности
AP	адресный расширитель
АШ	адресный шлейф
АУ	адресные устройства
БП	блок питания (внешний) постоянного тока
БЦП	блок центральный процессорный
ИО	извещатель охранный
ИП	извещатель пожарный
ИСБ	интегрированной системы безопасности
КЗ	короткое замыкание
Н3	нормально-замкнутые контакты (извещателя)
HP	нормально-разомкнутые контакты (извещателя)
ППК	прибор приемно-контрольный
ШС	шлейф сигнализации

1. Назначение

СКШС (см. Рис. 1) предназначен для приема электрических сигналов тревожных сообщений от охранных и пожарных извещателей, а также передачи информации о состоянии извещателей, шлейфов сигнализации (ШС), включая его адрес, и состояния питающего напряжения СКШС в БЦП исп. 7У и 8 прибора приёмно-контрольного охранно-пожарного и управления ППКОПУ 01059-1000-3 «Р-08», а также в ППК «Рубикон».

СКШС обеспечивает работу извещателей до 16 ШС.

СКШС входит в состав интегрированной системы безопасности ИСБ «Индигирка» (НЛВТ.425513.111 ТУ) и используются совместно с БЦП исп. 7У, БЦП исп.8 и ППК «Рубикон» (АСБ «Рубикон», ТУ 4372-002-72919476-2014).

В качестве блока питания рекомендуется использовать источники постоянного тока типа ИБП-1200/2400 исп.1, 2, ИБП-1224 исп.1, 2. Возможно использование любого источника бесперебойного питания с характеристиками, не ниже приведенных выше.

Связь СКШС с ППК «Рубикон» осуществляется по линии «RS-485».

По степени защищенности от воздействия окружающей среды в соответствии с ГОСТ 14254-96 СКШС выпускается в двух вариантах исполнения, обеспечивающих степень защиты оболочек IP20 и IP65.

При поставке СКШС-01-16 по требованию заказчика могут быть добавлены:

- повышающий внутренний источник питания шлейфов (необходим для применения токопотребляющих извещателей с напряжением питания выше, чем напряжение питания СКШС);
- изолятор линии «RS-485» (клеммы A, B, G «RS-485» от клеммы «0 Вольт» источника внешнего питания).

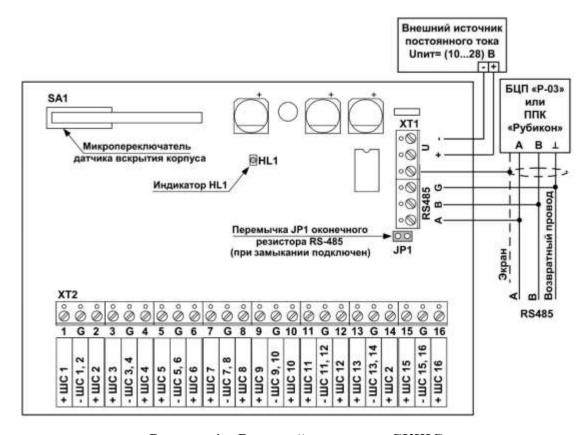


Рисунок 1 – Внешний вид платы СКШС

2. Технические характеристики

№	(а 1 – Основные технические характеристики СКІ Параметр	Значение	Примеч ание
1	Диапазон значений напряжений питания		
	постоянного тока, В	1028	
	Напряжение ШС, В		
2	– без повышающего внутреннего источника	10 20	
2	питания (равно напряжению питания)	1028	
	– с повышающим внутренним источником	2028	
	питания (но не ниже напряжения питания СКШС) Ток потребления, максимальное значение (для	2028	
	всех 16 ШС), мА		
3	– при напряжении питания 28 В без		
3	повышающего внутреннего источника питания	400	
	 при напряжении питания 9 В с повышающим 		
	внутренним источником питания	900	
4	Количество безадресных ШС	16	
~	Максимальный ток питания извещателей	3	
5	безадресного ШС в дежурном режиме (типы 3–6), мА		
	Максимальный ток питания извещателей	1,5	
6	безадресного ШС в дежурном режиме (типы 7 и 8,		
	при Roк = 4 кОм), мА		
_	Максимальный ток питания извещателей	0,8	
7	безадресного ШС в дежурном режиме (типы 7 и 8,		
	при Roк = 2 кОм), мА		
8	Ток удержания сигнала тревога первого	4	
8	сработавшего извещателя в режиме с различением двойной сработки (типы 4 и 6), мА	4	
	Максимальное (активное) сопротивление		
9	проводов безадресного ШС, Ом	100	
	Минимальное сопротивление изоляции проводов	100	
10	безадресного ШС, кОм	20	
	Максимальная емкость безадресного ШС при	5 ¹	
11	работе в режимах 3–6 (пожарных), нФ		
1.0	Максимальное напряжение питания безадресного		
12	ШС, В, не более	28	
	Номинальное значение времени срабатывания		
	СКШС при нарушении безадресного шлейфа		
13	(может дистанционно настраиваться), с		
	– по умолчанию	0,2	
	диапазон изменения (настройки)	0,05 3	

 $^{^{1}}$ 1 нф примерно соответствует 20 м типичного кабеля.

14	Время выхода на рабочий режим после		
14	включения питания, с, не более	20	
15	Интерфейс связи с БЦП	RS-485	
16	Максимальная протяженность линии связи с БЦП, м	1200 ²	
17	Линия связи	Экранирован ная (неэкраниров анная) витая пара 3–5 кат. с возвратным проводом	
18	Скорость передачи данных, бит/с	9600, 19200, 38400, 115200	
19	Напряжение изоляции между клеммами A, B, G «RS-485» и клеммой «0 Вольт» источника внешнего питания, B, не более	600	При наличии
20	Сопротивление изоляции между клеммами A, B, G «RS-485» и клеммой «0 Вольт» источника внешнего питания, МОм, не менее	1	изолятора RS-385
21	Степень защиты от воздействия окружающей среды по ГОСТ 14254-96	IP20, IP65	
22	Диапазон рабочих температур, °С	-40 +60	
23	Рабочий диапазон значений относительной влажности воздуха (максимальное значение соответствует температуре +25 °C, без конденсации влаги)	093 %	
24	Габаритные размеры, мм, не более – для СКШС в исполнении IP20 – для СКШС в исполнении IP65	165 x 110 x 32 193 x 145 x 55	
25	Масса, кг, не более – для СКШС в исполнении IP20 – для СКШС в исполнении IP65	0,27 0,35	

3. Конструкция

СКШС конструктивно выполнен в пластмассовом разъемном корпусе (Рис. 2 и 3), который состоит из крышки и основания корпуса. Корпус СКШС в зависимости от исполнения обеспечивает степень защиты IP20 или IP65. Крышка и основание корпуса соединяются с помощью выступов (Рис. 2) в исполнении IP20 или 4 винтами (Рис. 3) в исполнении IP65. На плате (Рис. 1) располагаются микропереключатель датчика вскрытия корпуса, светодиод наличия связи с ППК (HL1) и перемычка JP1 согласующего сопротивления (необходимо замкнуть, если устройство является последним СУ).

 $^{^{2}}$ Для увеличения длины линии связи используется БРЛ-03, БРЛ-04.

Плата устройства закреплена на основании корпуса с помощью 2 фиксаторов в исполнении IP20 или 4 винтами в исполнении IP65. Для вскрытия корпуса СКШС необходимо аккуратно освободить два выступа крышки корпуса из защелок, после чего освободить верхние защелки и отсоединить основание и крышку корпуса (IP20).

В случае необходимости извлечения всей платы следует отогнуть фиксаторы платы и переместить ее вверх (IP20).

В исполнении IP65 для вскрытия корпуса и извлечения платы необходимо вывернуть соответственно 4 винта, крепящих крышки и платы.

Процесс сборки устройства производить в обратном порядке.

Для закрепления СКШС на вертикальной поверхности основания корпуса предусмотрены отверстия крепления (Рис. 2 и 3).

Габаритные и присоединительные размеры в вариантах исполнения IP20 и IP65 показаны на рисунке 2 и 3 (основание корпуса с присоединительными отверстиями показано со стороны поверхности, к которой крепится основание).

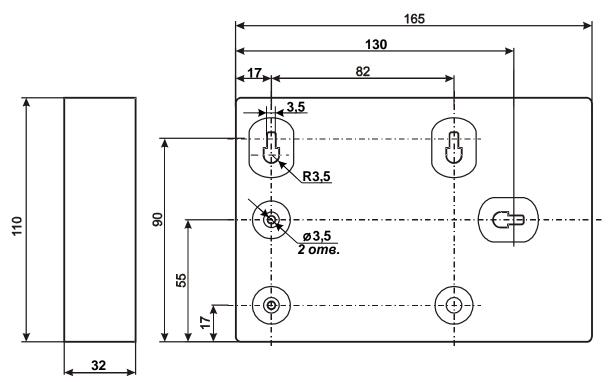


Рисунок 2 – Габаритные и присоединительные размеры (исп. IP20)

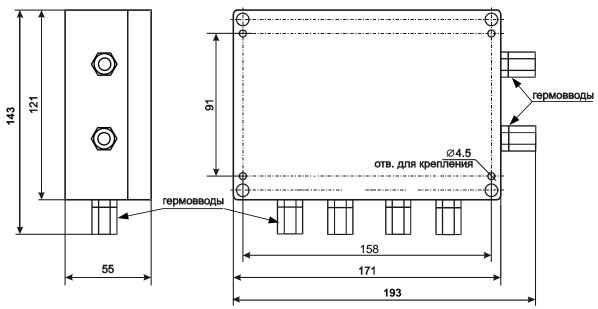


Рисунок 3 – Габаритные и присоединительные размеры (исп. IP65)

4. Комплект поставки

Комплект поставки СКШС приведен в таблице 2.

Таблица 2 – Комплект поставки СКШС

Обозначение	Наименование и условное обозначение	Кол-во Экз.	Примечание
НЛВТ.425641.157	Сетевой контроллер шлейфа сигнализации СКШС-01-16	1	
	Резистор 2 кОм, 0,25 Вт	16	Возможна замена на резистор 3,9 кОм, 0,25 Вт
НЛВТ.425641.157 ПС	Сетевой контроллер шлейфа сигнализации СКШС-01-16 Паспорт	1	
НЛВТ.425641.157 РЭ	Сетевой контроллер шлейфа сигнализации СКШС-01-16 Руководство по эксплуатации	1*	Настоящий документ, на 5–10 устройств

^{* –} По требованию заказчика. Руководство по эксплуатации размещено на сайте www.sigma-is.ru

5. Описание, индикация, монтаж и подключение

Монтаж СКШС и всех соединительных линий производится в соответствии с настоящим документом, а также со схемами электрических подключений, приведенными в соответствующих эксплуатационных документах на блоки и устройства.

СКШС подключается к БЦП исп.7У, БЦП исп.8 или ППК по линии связи «RS-485». В качестве экранированного кабеля рекомендуется применять кабель марки КСПЭВ, в качестве неэкранированного — кабель марки КСПВ. Сечение провода в кабеле должно быть не меньше $0.5~{\rm mm}^2$.

Подключение экранов кабелей линий связи к защитному заземлению необходимо осуществлять в одной точке.

Кабеля питания, линии связи с БЦП(ППК) и ШС при монтаже пропускаются через прорезь в основании корпуса (Рис. 2) в варианте исполнения IP20 или через соответствующие гермовводы в варианте исполнения IP65 (Рис. 3), при этом следует затянуть гайки гермовводов для обеспечения степени защиты корпуса. Максимальный диаметр кабеля, проходящего через гермоввод варианта исполнения IP65, составляет 7 мм.

Все работы по монтажу и подключению необходимо проводить при обесточенных устройствах.

5.1 Индикация

СКШС имеет один светодиодный индикатор (см. Рис. 1), расположенный под изоляционным покрытием. Индикация приведена в таблице 3.

Таблица 3 – Индикация СКШС

Индикация HL1	Состояние СКШС
Мигание	Дежурный режим.
	Обмен данными с БЦП(ППК)
Непрерывное свечение	Наличие питания при отсутствии связи

5.2 Типы безадресных ШС

Устройство позволяет работать со следующими типами шлейфов:

Тип 1. (Охранный ШС). «Т1[Охранный Н.З.]».

Рисунок-схема 1, Roк =1,0 кОм.

Обеспечивает прием сигналов тревожных извещений по двухпроводному ШС от ИО с нормально-замкнутыми контактами. В ШС выдаются импульсы напряжения положительной полярности, при этом производится контроль состояния извещателей с нормально-замкнутыми контактами и состояния ШС (короткое замыкание).

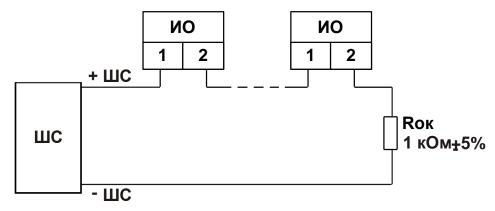


Рисунок-схема 1 – ИО с нормально-замкнутыми контактами (без контроля обрыва ШС)

Тип 2. (Охранный ШС). «Т2[Охранный Н.З.2]».

Рисунок-схема 2, R = 1.0 кОм, Rok = 1.0 кОм (не более трех ИО).

Обеспечивает прием сигналов тревожных извещений по двухпроводному ШС от ИО с нормально-замкнутыми контактами. В ШС выдаются импульсы напряжения

положительной полярности, при этом за счет подключенных к контактам ИО дополнительных резисторов производится контроль целостности проводов ШС (короткое замыкание, обрыв), а также контроль состояния извещателей с нормально-замкнутыми контактами.

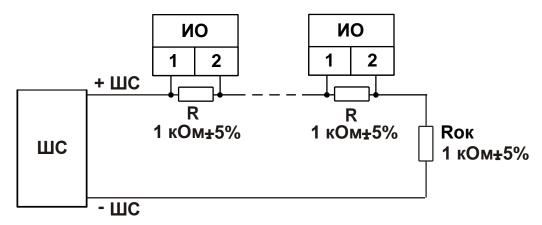


Рисунок-схема 2 – ИО с нормально-замкнутыми контактами (с контролем обрыва ШС, не более 3 ИО)

Тип 3. (Пожарный ШС). «Т3[Пожарный 1]».

Рисунок-схема 3. Сопротивление R см. Табл. 5

Сигнал «Пожар» формируется при срабатывании одного и более ИП в ШС. Обеспечивает прием сигналов тревожных извещений по двухпроводному ШС от автоматических и ручных пожарных извещателей с нормально-разомкнутыми контактами, а также от активных пожарных извещателей, при этом производится контроль ШС (короткое замыкание, обрыв).

В ШС выдается импульсное положительное напряжение.

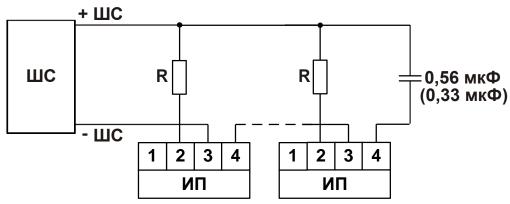


Рисунок-схема 3 – ИП с нормально-разомкнутыми контактами (типа ИП-212М и т. п.). R см. Табл. 5

Тип 4. (Пожарный ШС). «Т4[Пожарный 2]».

Рисунок-схема 3. Сопротивление R см. Табл. 5

Сигнал «Внимание» выдается при срабатывании одного автоматического ИП в ШС. Сигнал «Пожар» выдается при срабатывании двух и более автоматических ИП в ШС или одного и более ручного ИП. Обеспечивает прием сигналов тревожных извещений по двухпроводному ШС от автоматических и ручных пожарных извещателей с нормально-разомкнутыми контактами, а также от

активных пожарных извещателей. Производится контроль состояния ШС (короткое замыкание, обрыв).

В ШС выдается импульсное положительное напряжение.

Тип 5. (Пожарный ШС). «Т5[Пожарный 3]».

Рисунок-схема 3. Сопротивление R см. Табл. 5

Сигнал «Пожар» выдается только при повторном срабатывании одного и более ИП в ШС. Обеспечивает прием сигналов тревожных извещений по двухпроводному ШС от автоматических и ручных пожарных извещателей нормально-разомкнутыми контактами, пассивных ИП с нормально-разомкнутыми контактами, а также от активных пожарных извещателей. Для проверки достоверности срабатывания ИП в ШС данного типа в СКШС предусмотрен режим автоматического выключения питания на 3–5 секунд после первого срабатывания ИП. Производится контроль состояния ШС (короткое замыкание, обрыв).

Тип 6. (Пожарный ШС). «Т6[Пожарный 4]».

Рисунок-схема 3. Сопротивление R см. Табл. 5

СКШС выдает сигнал «Пожар» и «Внимание» на БЦП при повторном срабатывании ИП в ШС.СКШС). Обеспечивает прием сигналов тревожных извещений по двухпроводному ШС от автоматических и ручных пожарных извещателей с нормально-разомкнутыми контактами, пассивных ИП с нормально-разомкнутыми контактами, а также от активных пожарных извещателей. Для проверки достоверности срабатывания ИП в ШС данного типа в СКШС предусмотрен режим автоматического выключения питания на 3–5 секунд после первого срабатывания ИП.

Сигнал «Внимание» выдается при повторном срабатывании в течении 30 секунд (подтверждение сигнала) одного автоматического ИП в ШС, сигнал «Пожар» - при повторном срабатывании в течении 30 секунд двух и более автоматических ИП или одного и более ручного ИП. Производится контроль состояния ШС (короткое замыкание, обрыв).

Тип 7. (Пожарный или тревожный ШС). «Т7[окно/H.Р.]».

Рисунок-схема 4 и 5. R=2,0 кОм (не более двух ИО или ИП).

Обеспечивает прием сигналов тревожных извещений по двухпроводному ШС от ИП (ИО) с нормально-разомкнутыми контактами («сухой контакт»). Возможно использование с питаемыми по шлейфу извещателями. Не более двух извещателей в шлейфе. Производится контроль состояния ШС (короткое замыкание, обрыв).

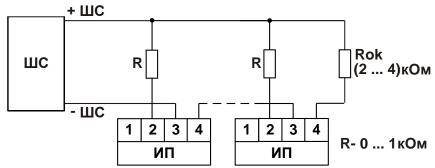


Рисунок-схема 4 – ИП Т7[H.P.] с нормально-разомкнутыми контактами, токопотребляющие (типа ИП-212М и т. п.). R см. Табл. 5

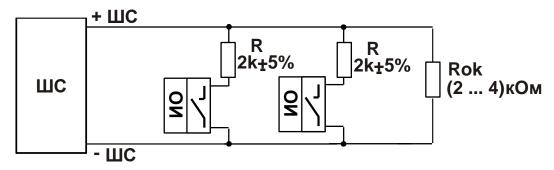


Рисунок-схема 5 – ИО с нормально-разомкнутыми контактами (Тип 7, не более двух извещателей)

Тип 8. (Тревожный ШС). «Т8[H.Р.]».

Рисунок-схема 6.

Обеспечивает прием сигналов тревожных извещений по двухпроводному ШС от ИО с нормально-разомкнутыми контактами («сухой контакт»). Производится контроль состояния ШС (обрыв).

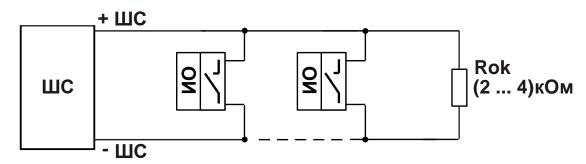


Рисунок-схема 6 – ИО с нормально-разомкнутыми контактами

Для указанных типов ШС в таблице 4 приведены значения электрических параметров для разных состояний шлейфа.

Таблица 4 – Состояние шлейфа

Состоян	Тип шлейфа					
Состоян ие шлейфа	Т1[Охран ный Н.З.]	T2[Охран ный Н.З.]	Т3[Пожа рный 1] Н.Р. Т5[Пожа рный 3] Н.Р.	T4[Пожар ный 2] Н.Р. Т6[Пожар ный 4] Н.Р.	T7[H.P.].	T8[H.P,]
КЗ	0500 Ом	0500 Ом	0220 Ом	0220 Ом	0500 Ом	-
НОРМА	6001300 Ом	6001300 Ом	6 кОм и выше, при наличии ёмкости более 300 нФ	6 кОм и выше, при наличии ёмкости более 300 нФ	1,74,0 кОм	1,74,0 кОм

ТРЕВОГ А	1,7 кОм и выше	1,74,0 кОм	-	-	От 600 Ом до 1,5 кОм	1,5 кОм и ниже
ПОЖАР	-	-	250 5000 Ом	-	-	-
ПОЖАР 1 (Вниман ие)	-	-	-	2,2 5,7 кОм	-	-
ПОЖАР 2 (Пожар)	-	-	-	2302000 Ом	-	-
ОБРЫВ	-	5 кОм и выше	6 кОм и выше, при емкости меньше 50 нФ	6 кОм и выше, при емкости меньше 50 нФ	5 кОм и выше	5 кОм и выше

5.3 Примеры подключения безадресных ШС

К безадресному ШС СКШС могут быть подключены пожарные и охранные извещатели, а также технологические датчики с нормально разомкнутыми (HP) и нормально-замкнутыми (H3) контактами.

СКШС обеспечивает контроль ШС на обрыв и короткое замыкание. На рисунках, приведенных выше, показано подключение извещателей.

При тонкой настройке может понадобиться ручная установка параметров режима работы СКШС с помощью технологического меню управления, за подробностями следует обращайься к представителю производителя.

Возможны два режима работы ШС (с контролем на обрыв и КЗ) с использованием как извещателей типа «сухие контакты», так и токопотребляющих извещателей:

- подключаемые извещатели выдают тревожное извещение («Пожар», «Тревога» и т.д.) при сработке одного любого из подключенных к безадресному ШС см. Табл. 5;
- подключаемые извещатели выдают тревожное извещение «Пожар 1» («Тревога 1») при сработке одного извещателя и «Пожар 2» («Тревога 2») при сработке двух извещателей, подключенных к безадресному ШС (см. Табл. 5).

Примеры подключения извещателей приведены на Рисунок-схемах 1-6.

Таблица 5 – Значение резистора R по вариантам подключения

	Режим работы		
Тип извещателя	Пожарный1 (Типы 3, 5) R	Пожарный 2 (Типы 4, 6, 7) R	
«сухие контакты» или токопотребляющий с напряжением «в пожаре» менее 2 В	1,03,0 кОм	3,0 кОм	
токопотребляющий с минимальным напряжением «в пожаре» более 3 В, включая: ИП212-66, ИПД-3.1м, ИП212-41м, ИП212-45, ИП212-116	0 1 кОм	1,8 2,2 кОм	

Внимание!

- 1. Для других типов (марок) извещателей сопротивление следует подбирать экспериментально. Можно обратиться за помощью к производителю.
- 2. В случае использования извещателей типа «сухие контакты» или аналогичных не рекомендуется использовать более 4 извещателей, поскольку при одновременной сработке 5 и более извещателей возможна ошибочная индикация «короткое замыкание».
- 3. Для всех типов извещателей при срабатывании более двух извещателей не гарантируется индикация «пожар» на индикаторах всех извещателей.
- 4. При питании шлейфа напряжением ниже 20 В работа токопотребляющих извещателей не гарантируется.
- 5. Оконечный конденсатор на рисунок-схеме 3 может иметь емкость от 0.33 до 0.68 мк Φ .

6. Работа

После окончательного монтажа и подачи напряжения питания на устройства АСБ для использования СКШС необходимо произвести конфигурирование устройства в БЦП исп. 7У, БЦП исп. 8 или в ППК и настройку режима работы ШС в БЦП (см. Руководство по программированию «Р-08») или ППК «Рубикон» (см. Руководство по программированию ППК «Рубикон»).

7. Проверка работоспособности

При необходимости проведения проверки изделий до монтажа, необходимо подключить СКШС к линии связи «RS-485» БЦП исп. 7У, БЦП исп.8 или ППК «Рубикон». На шлейф нужно подключить тестовые извещатели согласно таблице 5, затем проверить:

- в меню «конфигурация/устройства» наличие связи с изделием (установление связи происходит не позже, чем через 1 мин после включения питания), проконтролировать соответствие состояния состоянию «Норма».
- Поочередно выдать сигналы от извещателей, осуществить обрыв и короткое замыкание шлейфа, проконтролировать соответствие индикации.

Для контроля качества кабельной сети можно использовать параметры измеренного напряжения в шлейфе в состоянии всех извещателей «Норма».

8. Техническое обслуживание

Техническое обслуживание устройств производят по планово-предупредительной системе, которая предусматривает годовое техническое обслуживание.

Работы по годовому техническому обслуживанию выполняются работником обслуживающей организации и включают:

- проверку внешнего состояния;
- проверку надежности крепления клемм, состояние внешних монтажных проводов и кабелей;
- проверку параметров (сопротивления шлейфа и утечки) безадресных ШС;
- проверку состояния извещателей;

– проверку воспроизводимости измерений (параметры «Svoltage») относительно зафиксированных при пусконаладке системы с точностью 10 %.

При проверке устройств все подключения и отключения нужно производить при отсутствии напряжения питания.

В случае обнаружения неисправностей следует обратиться в службу технической поддержки производителя по адресу: support@sigma-is.ru.

9. Текущий ремонт

Текущий ремонт осуществляется специализированными организациями по истечении гарантийного срока. Возможные неисправности, причины и указания по их устранению приведены в таблице 6.

Таблица 6 – Возможные неисправности

Описание последствий отказов и повреждений	Возможные причины	Указания по устранению
Отсутствует свечение индикатора	Обрыв проводов питания, линии связи «RS-485» или плохой контакт в клеммах устройств	В случае необходимости затянуть соответствующие клеммные винты. Устранить обрыв кабеля

10. Хранение и транспортировка

В помещениях для хранения устройств не должно быть повышенного содержания пыли, паров кислот, щелочей, агрессивных газов и других вредных примесей, вызывающих коррозию.

Хранение устройств в таре должно соответствовать условиям ГОСТ 15150.

Транспортировка упакованных устройств может производиться в любых крытых транспортных средствах. При транспортировке и перемещении устройства должны оберегаться от ударов, толчков и воздействия влаги.

Условия транспортировки и хранения должны соответствовать ГОСТ 15150.

После транспортировки устройств при отрицательной температуре перед включением они должны быть выдержаны в нормальных условиях не менее 24 ч.

11. Утилизация

Прибор не оказывает негативного воздействия на окружающую среду и не включает в себя материалы, для утилизации которых требуются специальные меры безопасности.

Прибор представляет собой устройство с электронными компонентами и подлежит утилизации в соответствии с методами, предусмотренными для подобных изделий, согласно инструкциям и правилам, действующим в вашем регионе.

12. Гарантии изготовителя

Изготовитель гарантирует соответствие устройств требованиям технических условий при соблюдении потребителем правил транспортирования, хранения, монтажа и эксплуатации.

Гарантийный срок эксплуатации составляет 18 месяцев со дня ввода в эксплуатацию, но не более 24 месяцев со дня отгрузки.

13. Сведения об изготовителе

ООО «РИСПА», 105173, Россия, г. Москва, ул. 9-мая, 126

Телефон: (495) 542-41-70, факс: (495) 542-41-80

Электронная почта:

– по общим вопросам: <u>info@sigma-is.ru</u>;– коммерческий отдел: <u>sale@sigma-is.ru</u>;

– техническая поддержка: support@sigma-is.ru; – ремонт оборудования: remont@sigma-is.ru;

- сайт: http://www.sigma-is.ru.

14. Сведение о дистрибьюторе

Эксклюзивным дистрибьютором прибора является ООО «Ай Пи Дром Дистрибьюшн» (www.ipdrom.ru), 127018, г. Москва, ул. Сущёвский Вал, д. 18, этаж 18

Телефон: 8-800-550-21-85

Доп. телефон: +7 (495) 741-85-70 График работы: Будни с 9:00 до 18:00 Электронная почта: <u>info@ipdrom.ru</u>

Адрес склада: г. Москва, Мурманский проезд, д. 1А, строение 8

Телефон: 8-800-550-21-85

Доп. телефон: +7 (495) 741-85-70 График работы: Будни с 9:00 до 18:00 Электронная почта: <u>info@ipdrom.ru</u>

15. Сведения о рекламациях

При отказе устройств в работе и обнаружении неисправностей должен быть составлен рекламационный акт о выявленных дефектах и неисправностях.

Устройство вместе с паспортом и рекламационным актом возвращается предприятию-изготовителю для ремонта или замены.

Внимание!

- 1. Механические повреждения корпусов и плат составных частей устройства приводят к нарушению гарантийных обязательств.
- 2. Выход устройства из строя в результате несоблюдения правил монтажа, технического обслуживания и эксплуатации не является основанием для рекламации и бесплатного ремонта.
- 3. Претензии без паспорта устройства и рекламационного акта предприятие-изготовитель не принимает.

18_______ООО «РИСПА»

	46	,,	20	года
		_	20	_ 10да
	. М А Ц И О Н Н Ы Й ных дефектах и неиспра		X	
Комиссия в составе предста	вителей организации:			
	(наименование организации)			
	(адрес, телефон)			
Составила настоящ наладки / эксплуатации (нух	(банковские реквизиты) дий акт в том, что в прокное подчеркнуть):	оцессе мо	онтажа / пу	уско-
	(наименование оборудования)			
(заводской номер)	(версия оборудования)		ата изготовлен	 ия)
обнаружены следук	ощие дефекты и неисправи	ности:		
Комиссия:				
Контактное лицо:	те.	л:		

E-mail:

16. Редакции документа

Редакция	Дата	Описание
1	13.05.2015	
2	18.06.2018	Добавлены варианты СКШС-01-16 с повышающий внутренний источник питания шлейфов и с изолятором линии «RS-485» см. Назначение. Уточнены характеристики – см. Технические характеристики.
3.1	18.07.2018	Уточнены пп 5.2, 5.3.
3.3	08.04.2019	Уточнены пп 5.2, 5.3.
4	05.05.2019	Уточнены пп 5.2, 5.3.
5	19.05.2025	Изменения в стиле оформления РЭ и дизайне. Добавлен рекламационный лист. Добавлены разделы сведения о дистрибьюторе и утилизация. Также добавлен нижний колонтитул на все страницы с номером НЛВТ.